IR status

2009/3/18 M. Iwasaki (Univ. of Tokyo)

Introduction

Super-KEKB → High luminosity experiment

To increase the luminosity,

machine parameters will drastically change

Issues of the IR design:

1. Beam background

High beam current / High power SR emission

2. Heating of IR components

Short bunch length / High current / High power SR

3. Assembly of inner detectors, beam pipe, and final magnets

Place final Q magnets closer to IP

IR design is very important in Super-KEB

From KEKB to Super-KEKB 1 Machine parameters Y.Funakoshi Kick off meeting

	Present KEKB LER/HER	KEKB Design LER/HER	Super KEKB LER/HER
β _x * [m]	0.59/0.56	0.33	0.2 (0.4)
β _y * [mm]	6.5/5.9	10	3
ε _x [nm]	18/24	18	12
σ _z [mm]	~8/~7	5 (3
φ _c [mrad]	±11	±11	±15 (Crab)
I _{beam} [A]	1.66/1.34	2.6/1.1 (9.4/4.1
L [10 ³⁴ /cm ² /s]	1.71	1	55

3

From KEKB to Super-KEKB 2 Place QCS magnets closer to IP

Y.Funakoshi Kick off meeting

There is little space in L-side... We must think about the detector assembly

Two machine parameter options

To avoid the beam instability by Coherent Synchrotron Radiation (CSR), we must design the longer bunch length for LER ←Oide-san's talk yesterday

Currently 2 machine options are considered: High-current and Nano-beam

	High current option (LER/HER)	Nano-beam option (LER/HER)				
Beam current I (A)	High current : 9.4/4.1	2.7/1.55				
Bunch length σ_z (mm)	Short bunch length : 5/3	6/6				
Emittance ϵ_x (nm) ϵ_y (nm)	24/18 0.24/0.09	Low emittance : 1/10 0.0035/0.025				
β _x β _y (nm)	200/200 3/6	Small β : 35/20 0.35/0.22				
Beam size σ_y	0.85/0.73 (μm)	Small beam size : 35/71 (nm)				
Distance btw IP and QCS	<mark>∼40cm (L)</mark> / ~65cm (R)	~30cm each ??				

High-current option ... Higher SR BG / HOM heating Nano-beam option ... IR assembly is difficult

IR studies

IR group meeting is held every other week U. Tokyo, Tohoku U., KEK Belle and KEKB team

http://kds.kek.jp/categoryDisplay.py?categId=229

Current status of the IR studies

Detector IR group status

1. Beam Background

SR BG simulation studies (Tokyo / KEK) Other BG sources ... not yet

2. Heating of IR components

HOM heating studies (Tohoku / KEK) SR heating calculation (KEK) \rightarrow H. Yamaoka-san's talk

3. Detector assembly

Must consider the detector support / assembly design

Today, we also ask machine talks directly related to the detector:Machine parameters / optics \rightarrow H. Koiso-sanQCS design \rightarrow N. Ohuchi-sanIR region assembly \rightarrow K. Kanazawa-san

Back up

Parameters for Super B Factories

a) b-b simulation, b) geometrical

	SuperKEKB	SuperBunch T	SuperBunch H	Super B	Super B New
εx (nm) (L/H)	24/18	1/10	1/10	2.8/1.6	2.8/1.6
εy(nm)	0.24/0.09	0.0035/0.025	0.0035/0.025	0.007/0.004	0.007/0.004
к (%)	1/0.5	0.35/0.25	0.35/0.25	0.25/0.25	0.25/0.25
βx (mm)	200/200	35/20	35/10	35/20	44/25
βy (mm)	3/6	0.35/0.22	0.35/0.22	0.22/0.39	0.21/0.37
σx (μm)	69/60	5.9/14	5.9/10	9.9/5.66	11/6.32
σy (μm)	0.85/0.73	0.035/0.071	0.035/0.071	0.039/0.039	0.038/0.038
σz (mm)	5/3	6/6	6/6	5/5	5/5
φσz/σχ	0/0	31/13	31/18	14/25	14/24
σx∕φ(mm)	∞/∞	0.21/0.47	0.20/0.33	0.35/0.20	0.37/0.21
ne	5.25x10 ¹⁰	3.89x10 ¹⁰	8.11x10 ¹⁰	5.52x10 ¹⁰	5.99x10 ¹⁰
np	12.x10 ¹⁰	6.78x10 ¹⁰	1.39x10 ¹¹	5.52x10 ¹⁰	5.99x10 ¹⁰
I _{beam} (A)	9.4/4.1	2.70/1.55	2.65/1.55	1.85/1.85	2.0/2.0
#bunch/Cir(m)	5000/3016	2500/3016	1200/3016	1251/1800	1251/1800
♦ (mrad) (half crossing angle)	0	30	30	24	30
ξy	0.30/0.51	0.067/0.068	0.139/0.139	0.147/0.150	0.125/0.126
Lum	5.3×10^{35} a)	5.0x10 ^{35 b)}	10x10 ^{35 b)}	11x10 ^{35 b)}	10x10 ^{35 b)}

Relationship between s-Belle and Super-KEKB

In Super-KEKB, crossing angle will be increased : 22mrad \rightarrow 30mrad

Belle beam pipe (and SVD??) axis at Super-KEKB

- Belle solenoid
- Center of the LER and HER (7mrad from Belle solenoid)
- HER axis (22mrad from Belle solenoid)

Dynamic beam-beam effect

Parameter search for smaller beam size Y.Funakoshi

	no b-b	r	nomina	nal higi		higher emittance		higher βx*		even higher βx^*					
v _{x0}		.503	.505	.510	.503	.505	.510	.503	.505	.510	.503	.505	.510		
ε _{x0} [nm]							15	12	12	12	12	12			
β _{x0} ΄ [cm]	20	20	20	20	20	20	20	40	40	40	β (wo dynamic effect)				
ξ _{x0}	0	.270	.270	.270	.135	.135	.135	.272	.272	.272	.273	.273	.273		
ε _x [nm]		81.9	<mark>צ (w</mark>	ε (with dynamic effect)					64.3	46.7	82.3	64.4	46.8		
β _x ΄ [cm]		1.50	1.93	2.77	2.1	2.7	3.8	2.99	3.87	1.53	β (w	ith dy	/nam	nic effect	:)
σ _x @ QC2RE [mm]	4.0	39.5	30.9	30.9 5 times higher ϵ , 10 times smaller β in x											
Nc	Dynamic effect at Super-KEKB is very strong										g				

IR magnet layout

Physical Aperture

- Requirement : 5 σ_x with beam-beam effect
 - Larger than injection aperture
 - $\sigma_x @ QC2LE (HER) and QC2RE (HER) must be decreased.$
- Moved QC2LE and QC2RE closer to IP
- Increased $\beta_x^* 20 \rightarrow 40$ cm
 - Luminosity will decrease by ~20 %.

Pumps are not fixed yet.

Kanazawa

the vacuum ducts

Kanazawa

Possible assembling procedure

The connecting flanges of QCSLD chamber and IP chamber become inaccessible during assembling. IP chamber and SVD must be assembled in front of QCSLD outside the Belle detector.

Kanazawa